Molecular Medicine - Hecht Laboratory
Publications
2023 | Antón-García P, Haghighi EB, Rose K, Vladimirov G, Boerries M, Hecht A. TGFβ1-Induced EMT in the MCF10A Mammary Epithelial Cell Line Model Is Executed Independently of SNAIL1 and ZEB1 but Relies on JUNB-Coordinated Transcriptional Regulation. Cancers (Basel). 2023 Jan 16;15(2):558. doi: 10.3390/cancers15020558. PMID: 36672507; PMCID: PMC9856774 | ||
Fröhlich J, Rose K, Hecht A. Transcriptional activity mediated by β-CATENIN and TCF/LEF family members is completely dispensable for survival and propagation of multiple human colorectal cancer cell lines. Sci Rep. 2023 Jan 6;13(1):287. doi: 10.1038/s41598-022-27261-0. PMID: 36609428; PMCID: PMC9822887. | |||
2022 | Flum, M., Dicks, S., Teng, Y-H., Schrempp, M., Nyström, A., Boerries, M., Hecht, A. Canonical TGFβ signaling induces collective invasion in colorectal carcinogenesis through a Snail1- and Zeb1-independent partial EMT. Oncogene 2022 Mar;41(10):1492-1506. doi: 10.1038/s41388-022-02190-4. Epub 2022 Jan 24. PMID: 35075245 | ||
2021 | Frey, P., Devisme, A., Rose, K. Schrempp, M, Freihen, V, Andrieux, G, Boerries, M, Hecht, A, SMAD4 mutations do not preclude epithelial–mesenchymal transition in colorectal cancer. Oncogene (2021). 2021/12/03, SN 1476-5594, https://doi.org/10.1038/s41388-021-02128-2. PMID: 34857888 | ||
2020 | Wenzel J, Rose K, Haghighi EB, Lamprecht C, Rauen G, Freihen V, Kesselring R, Boerries M, Hecht A. Oncogene. Loss of the nuclear Wnt pathway effector TCF7L2 promotes migration and invasion of human colorectal cancer cells. Oncogene2020 May;39(19):3893-3909. doi: 10.1038/s41388-020-1259-7. Pubmed32203164 | ||
Frey P, Devisme A, Schrempp M, Andrieux G, Boerries M, Hecht A. Canonical BMP Signaling Executes Epithelial-Mesenchymal Transition Downstream of SNAIL1. Cancers (Basel). 2020 Apr 21;12(4). pii: E1019. doi: 10.3390/cancers12041019. Pubmed32326239 | |||
Freihen V, Rönsch K, Mastroianni J, Frey P, Rose K, Boerries M, Zeiser R, Busch H, Hecht A. SNAIL1 employs β-Catenin-LEF1 complexes to control colorectal cancer cell invasion and proliferation.Int J Cancer. 146 (8), 2229-2242 2020 Apr 15. doi: 10.1002/ijc.32644. Pubmed31463973 | |||
2019 | Beyes S, Andrieux G, Schrempp M, Aicher D, Wenzel J, Antón-García P, Boerries M, Hecht A. Genome-wide mapping of DNA-binding sites identifies stemness-related genes as directly repressed targets of SNAIL1 in colorectal cancer cells. Oncogene. 2019 Oct;38(40):6647-6661. doi: 10.1038/s41388-019-0905-4. Epub 2019 Aug 7. Pubmed31391555 | ||
2017 | Jägle S, Busch H, Freihen V, Beyes S, Schrempp M, Boerries M, Hecht A. SNAIL1-mediated downregulation of FOXA proteins facilitates the inactivation of transcriptional enhancer elements at key epithelial genes in colorectal cancer cells. PLoS Genet. 2017 Nov 20;13(11):e1007109. doi: 10.1371/journal.pgen.1007109. eCollection 2017 Nov. Pubmed29155818 | ||
Jägle S, Dertmann A, Schrempp M, Hecht A. ZEB1 is neither sufficient nor required for epithelial-mesenchymal transition in LS174T colorectal cancer cells. Biochem Biophys Res Commun. 2017 Jan 22;482(4):1226-1232. doi: 10.1016/j.bbrc.2016.12.017. Pubmed27923654 | |||
2016 | Schnappauf O, Beyes S, Dertmann A, Freihen V, Frey P, Jägle S, Rose K, Michoel T, Grosschedl R, Hecht A. Enhancer decommissioning by Snail1-induced competitive displacement of TCF7L2 and down-regulation of transcriptional activators results in EPHB2 silencing. Biochim Biophys Acta. 2016 Nov;1859(11):1353-1367. doi: 10.1016/j.bbagrm.2016.08.002. Epub 2016 Aug 5. Pubmed27504909 | ||
2015 | Benary U, Kofahl B, Hecht A, Wolf J. Mathematical modelling suggests a differential impact of β-transducin repeat-containing protein paralogues on Wnt/β-catenin signalling dynamics. FEBS J. 2015 Mar;282(6):1080-96. doi: 10.1111/febs.13204. Pubmed25601154 | ||
Rönsch K, Jägle S, Rose K, Seidl M, Baumgartner F, Freihen V, Yousaf A, Metzger E, Lassmann S, Schüle R, Zeiser R, Michoel T, Hecht A. SNAIL1 combines competitive displacement of ASCL2 and epigenetic mechanisms to rapidly silence the EPHB3 tumor suppressor in colorectal cancer. Mol Oncol. 2015 Feb;9(2):335-54. doi: 10.1016/j.molonc.2014.08.016. Epub 2014 Sep 16. Pubmed25277775 | |||
2014 | Jägle S, Rönsch K, Timme S, Andrlová H, Bertrand M, Jäger M, Proske A, Schrempp M, Yousaf A, Michoel T, Zeiser R, Werner M, Lassmann S, Hecht A. Silencing of the EPHB3 tumor-suppressor gene in human colorectal cancer through decommissioning of a transcriptional enhancer. Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4886-91. doi: 10.1073/pnas.1314523111. Epub 2014 Mar 18. Pubmed24707046 | ||
2013 | Elfert S, Weise A, Bruser K, Biniossek ML, Jägle S, Senghaas N, Hecht A. Acetylation of human TCF4 (TCF7L2) proteins attenuates inhibition by the HBP1 repressor and induces a conformational change in the TCF4::DNA complex. PLoS One. 2013 Apr 15;8(4):e61867. doi: 10.1371/journal.pone.0061867. Print 2013. Pubmed23613959 | ||
Benary U, Kofahl B, Hecht A, Wolf J. Modeling Wnt/β-Catenin Target Gene Expression in APC and Wnt Gradients Under Wild Type and Mutant Conditions. Front Physiol. 2013;4:21. doi: 10.3389/fphys.2013.00021. Epub 2013 Feb 25. Pubmed23508686 | |||
2012 | Wallmen B, Schrempp M, Hecht A.Intrinsic properties of Tcf1 and Tcf4 splice variants determine cell-type-specific Wnt/β-catenin target gene expression. Nucleic Acids Res. 2012 Oct 1;40(19):9455-69. doi: 10.1093/nar/gks690. Pubmed22859735 | ||
2011 | Rönsch K, Jäger M, Schöpflin A, Danciu M, Laßmann S, Hecht A. Class I and III HDACs and loss of active chromatin features contribute to epigenetic silencing of CDX1 and EPHB tumor suppressor genes in colorectal cancer. Epigenetics. 2011 May;6(5):610-22. Epub 2011 May 1. Pubmed21393996 | ||
Luckert K, Götschel F, Sorger PK, Hecht A, Joos TO, Pötz O. Snapshots of Protein Dynamics and Post-translational Modifications In One Experiment--{beta}-Catenin and Its Functions. Mol Cell Proteomics. 2011 May;10(5):M110.007377. Epub 2011 Mar 4. Pubmed21378377 | |||
2010 | Gebhardt R, Lerche KS, Götschel F, Günther R, Kolander J, Teich L, Zellmer S, Hofmann HJ, Eger K, Hecht A, Gaunitz F. 4-Amino-ethyl-amino-emodin - a novel potent inhibitor of GSK-3beta - acts as an insulin-sensitizer avoiding downstream effects of activated beta-catenin.J Cell Mol Med. 2010 Jun;14(6A):1276-93. Pubmed19228266 | ||
Weise A, Bruser K, Elfert S, Wallmen B, Wittel Y, Wöhrle S, Hecht A. Alternative splicing of Tcf7l2 transcripts generates protein variants with differential promoter-binding and transcriptional activation properties at Wnt/ß-catenin targets. Nucleic Acids Res. 2010 Apr;38(6):1964-81. Pubmed20044351 | |||
2008 | Denayer T, Locker M, Borday C, Deroo T, Janssens S, Hecht A, van Roy F, Perron M, Vleminckx K. Canonical Wnt signaling controls proliferation of retinal stem/progenitor cells in postembryonic Xenopus eyes. Stem Cells. 2008 Aug;26(8):2063-74. Pubmed18556512 | ||
Götschel F, Kern C, Lang S, Sparna T, Markmann C, Schwager J, McNelly S, von Weizsäcker F, Laufer S, Hecht A, Merfort I Inhibition of GSK3 differentially modulates NFκB, CREB, AP-1 and β-catenin signaling in hepatocytes, but fails to to promote TNF-α -induced apoptosis. Exp. Cell. Res. 2008 April 1; 314 (6): 1351-1366 Pubmed18261723 | |||
2007 | Wöhrle S, Wallmen B, Hecht A.:Differential control of Wnt target genes involves epigenetic mechanisms and selective promoter occupancy by TCFs. Mol Cell Biol. 2007 Dec;27(23):8164-8177 Pubmed17923689 | ||
Hirsch C, Campano LM, Wohrle S, Hecht A. Canonical Wnt signaling transiently stimulates proliferation and enhances neurogenesis in neonatal neural progenitor cultures. Exp Cell Res. 2007 Feb 1;313(3):572-87. Pubmed17198701 | |||
2006 | Schepsky A, Bruser K, Gunnarsson GJ, Goodall J, Hallsson JH, Goding CR, Steingrimsson E, Hecht A. The microphthalmia-associated transcription factor Mitf interacts with beta-catenin to determine target gene expression. Mol Cell Biol. 2006 Dec;26(23):8914-27. Epub 2006 Sep 25. Pubmed17000761 | ||
Klingmuller U, Bauer A, Bohl S, Nickel PJ, Breitkopf K, Dooley S, Zellmer S, Kern C, Merfort I, Sparna T, Donauer J, Walz G, Geyer M, Kreutz C, Hermes M, Gotschel F, Hecht A, Walter D, Egger L, Neubert K, Borner C, Brulport M, Schormann W, Sauer C, Baumann F, Preiss R, MacNelly S, Godoy P, Wiercinska E, Ciuclan L, Edelmann J, Zeilinger K, Heinrich M, Zanger UM, Gebhardt R, Maiwald T, Heinrich R, Timmer J, von Weizsacker F, Hengstler JG. Primary mouse hepatocytes for systems biology approaches: a standardized in vitro system for modelling of signal transduction pathways. Syst Biol (Stevenage). 2006 Nov;153(6):433-47. Pubmed17186705 | |||
Kim S, Xu X, Hecht A, Boyer TG. Mediator is a transducer of Wnt/beta-catenin signaling. J Biol Chem. 2006 May 19;281(20):14066-75. Epub 2006 Mar 24. Pubmed16565090 | |||
2005 | Stemmler MP, Hecht A, Kemler R. E-cadherin intron 2 contains cis-regulatory elements essential for gene expression. Development. 2005 Mar;132(5):965-76. Epub 2005 Jan 26. Pubmed15673570 | ||
2004 | Hecht A. Members of the T-cell factor family of DNA-binding proteins and their roles in tumorigenesis. in "Handbook of Experimental Pharmacology", Vol. 166, M. Gossen, J. Kaufmann und S. Triezenberg (eds.), Springer Verlag, Berlin, Heidelberg, 123-165 | ||
2003 | Shah S, Hecht A, Pestell R, Byers SW. Trans-repression of beta-Catenin Activity by Nuclear Receptors. J Biol Chem. 2003 Nov 28;278(48):48137-48145. Epub 2003 Sep 12 Pubmed12972427 | ||
Stemmler MP, Hecht A, Kinzel B, Kemler R. Analysis of regulatory elements of E-cadherin with reporter gene constructs in transgenic mouse embryos. Dev Dyn. 2003 Jun;227(2):238-45 Pubmed12761851 | |||
Hecht A, Stemmler MP. Identification of a promoter-specific transcriptional activation domain at the C terminus of the Wnt effector protein T-cell factor 4. J Biol Chem. 2003 Feb 7;278(6):3776-85. Epub 2002 Nov 22 Pubmed12446687 | |||
2002 | Hecht A, Stemmler MP. Identification of a promoter-specific transcriptional activation domain at the C-terminus of the Wnt-effector protein TCF4. J Biol Chem. 2003 Feb 7;278(6):3776-85. Epub 2002 Nov 22. Pubmed12446687 | ||
Aoki M, Sobek V, Maslyar DJ, Hecht A, Vogt PK. Oncogenic transformation by beta-catenin: deletion analysis and characterization of selected target genes. Oncogene 2002 Oct 10;21(46):6983-91 Pubmed12370820 | |||
Hecht A. Funktionen von ß-Catenin im Zellkern: Wie werden Zielgene des Wnt-Signalwegs reguliert? in Jahrbuch der Max-Planck-Gesellschaft 2002, MPG München, 190-194 | |||
2000 | Hecht A, Kemler R. Curbing the nuclear activities of beta-catenin. Control over Wnt target gene expression. EMBO Rep 2000 Jul;1(1):24-8 Pubmed11256619 | ||
Hecht A, Vleminckx K, Stemmler MP, van Roy F, Kemler R. The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. EMBO J 2000 Apr 17;19(8):1839-50 Pubmed10775268 | |||
1999 | Vogt PK, Aoki M, Bottoli I, Chang HW, Fu S, Hecht A, Iacovoni JS, Jiang BH, Kruse U. A random walk in oncogene space: the quest for targets. Cell Growth Differ 1999 Dec;10(12):777-84 Pubmed10616902 | ||
Hecht A, Grunstein M. Mapping DNA interaction sites of chromosomal proteins using immunoprecipitation and polymerase chain reaction. Methods Enzymol 1999;304:399-414 Pubmed10372373 | |||
Hecht A, Litterst CM, Huber O, Kemler R. Functional characterization of multiple transactivating elements in beta-catenin, some of which interact with the TATA-binding protein in vitro. J Biol Chem 1999 Jun 18;274(25):18017-25 Pubmed10364252 | |||
Hecht A, Strahl-Bolsinger S, Grunstein M. Mapping DNA interaction sites of chromosomal proteins. Crosslinking studies in yeast. Methods Mol Biol 1999;119:469-79 Pubmed10804533 | |||
Vleminckx K, Kemler R, Hecht A. The C-terminal transactivation domain of beta-catenin is necessary and sufficient for signaling by the LEF-1/beta-catenin complex in Xenopus laevis. Mech Dev 1999 Mar;81(1-2):65-74 Pubmed10330485 | |||
Aoki M, Hecht A, Kruse U, Kemler R, Vogt PK. Nuclear endpoint of Wnt signaling: neoplastic transformation induced by transactivating lymphoid-enhancing factor 1. Proc Natl Acad Sci U S A 1999 Jan 5;96(1):139-44 Pubmed9874785 | |||
1997 | Strahl-Bolsinger S, Hecht A, Luo K, Grunstein M. SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev 1997 Jan 1;11(1):83-93 Pubmed9000052 | ||
1996 | Hecht A, Strahl-Bolsinger S, Grunstein M. Spreading of transcriptional repressor SIR3 from telomeric heterochromatin. Nature 1996 Sep 5;383(6595):92-6 Pubmed8779721 | ||
1995 | Grunstein M, Hecht A, Fisher-Adams G, Wan J, Mann RK, Strahl-Bolsinger S, Laroche T, Gasser S. The regulation of euchromatin and heterochromatin by histones in yeast. J Cell Sci Suppl 1995;19:29-36 Pubmed8655644 | ||
Hecht A, Laroche T, Strahl-Bolsinger S, Gasser SM, Grunstein M. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 1995 Feb 24;80(4):583-92 Pubmed7867066 | |||
1993 | Sippel AE, Schafer G, Faust N, Saueressig H, Hecht A, Bonifer C. Chromatin domains constitute regulatory units for the control of eukaryotic genes. Cold Spring Harb Symp Quant Biol 1993;58:37-44 Pubmed7956050 | ||
Thompson JS, Hecht A, Grunstein M. Histones and the regulation of heterochromatin in yeast. Cold Spring Harb Symp Quant Biol 1993;58:247-56 Pubmed7956035 | |||
1992 | Grewal T, Theisen M, Borgmeyer U, Grussenmeyer T, Rupp RA, Stief A, Qian F, Hecht A, Sippel AE. The -6.1-kilobase chicken lysozyme enhancer is a multifactorial complex containing several cell-type-specific elements. Mol Cell Biol 1992 May;12(5):2339-50 Pubmed1569954 | ||
1991 | Bonifer C, Hecht A, Saueressig H, Winter DM, Sippel AE. Dynamic chromatin: the regulatory domain organization of eukaryotic gene loci. J Cell Biochem 1991 Oct;47(2):99-108 Pubmed1757483 | ||
Sippel, A. E., Saueressig, H., Winter, D., Grewal, T., Faust, N., Hecht, A. und Bonifer, C. (1991), "The regulatory domain organization of eukaryotic genomes - implications for stable gene transfer.", in "Transgenic Mice in Biology and Medicine", F. Grosveld und G. Kollias (eds.), Acad. Press, London, 1-26. | |||
1989 | Sippel, A. E., Stief, A., Hecht, A., Theisen, M., Borgmeyer, U., Rupp, R. A. W., Grewal, T. und Grussenmeyer, T. (1989), "The structural and functional domain organization of the chicken lysozyme gene locus.", in "Nucleic Acids and Molecular Biology 3", Eckstein, F. und Lilley, D. M. J. (eds.), Springer Verlag, Berlin Heidelberg, 133-147. | ||
1988 | Bonifer, C., Hecht, A., Peters, C., and Sippel. A.E. (1988). Rat antibodies as probes for the characterization of progesterone receptor A and B proteins from laying hen oviduct cytosol. Biochim. Biophys. Acta 968, 96-108 Pubmed3337848 | ||
Hecht A, Berkenstam A, Stromstedt PE, Gustafsson JA, Sippel AE. A progesterone responsive element maps to the far upstream steroid dependent DNase hypersensitive site of chicken lysozyme chromatin. EMBO J 1988 Jul;7(7):2063-73 Pubmed3416833 | |||
Sippel, A. E., Theisen, M., Borgmeyer, U., Strech-Jurk, U., Rupp, R. A. W., Püschel, A. W., Müller, A., Hecht, A., Stief, A. und Grussenmeyer, T. (1988), "Regulatory function and molecular structure of DNaseI hypersensitive elements in the chromatin domain of a gene.", in "Architecture of Eucaryotic Genes", G. Kahl (ed.) Verlagsgesellschaft Chemie (VHC), Weinheim, 355-369. | |||